

The 3rd International Conference ON Biomedical & Clinical Engineering

Main Elements of HTM System and Quality of Patientcare

lyad Mobarek, Malkawi

Vision of healthcare institutions?

Preventable Medical Errors

Up to <u>440,000</u> Americans are dying annually from preventable medical errors*

Annual Accidental Deaths (USA)

- Healthcare is way behind aviation industry in terms of safety, incidents, errors and regulation
- Operating hospitals similar to airplanes ?
- Turkey MOH benefited from military for their PPP evaluation formula

* http://www.hospitalsafetyscore.org/newsroom/display/hospitalerrors-thirdleading-causeofdeathinus-improvementstooslow

Patient Interactions

We need to build HTM system that minimizes incidents and adverse events

Causes of Medical-device-related Incidents

- Device failure
- Device interaction
- User error
- Maintenance error
- Packaging error

Medical Equipment Function

Medical Equipment

Direct Patient Use

Test Equipment

Tests Medical Equipment

Calibration Equipment

Verifies Test Equipment Accuracy

All type of equipment are critical to Patient Safety and Quality of Healthcare

Building the Components of the HTM

User Training

a Key component for successful Healthcare Technology Management

Studies on aspects that contribute to equipment breakdown

% of occurrence

Source: ECRI Institute

Performance Monitoring and Quality Control

Continuous improvement with KPI metrics

- ✓ Incident frequency
- ✓ Recalls
- ✓ Down Time (DT)
- ✓ TBR (Mean Time Between Repairs) and MTTR (Mean Time To Repair)
- $\checkmark\,$ Repeated failures within a specified period
- PPM (Planned Preventive Maintenance)
 Compliance
- ✓ Response time
- ✓ Service cost ratio

Down Time (DT)

Total DT

- True Down Time Cost (TDC)... difficult to estimate
- Total DT = $\Sigma(T_{clinical} + T_{Eng} + T_{QC} + T_{EC} + ...)$
- DT formula

 $\mathsf{DT} = \frac{MTTR}{MTTR + MTBF}$

Patient safety and health technology

Safety in Preventive / screening technologies

Screening and Early Detection of Diseases

Mammography & US screening for early detection of breast cancer

- Screening
- Care pathways
- CAD

Diagnostic Systems

Stereotactic Biopsy

Very accurate computerized needle positioning

Minimum clinical complications

Cost effective and quality impact

Promote use of technologies Calibration is critical

Source: http://www.imagenorth.org

Diagnostic & radiotherapy systems

Radiation protection

National requirements

Servicer versus operator requirements

Control measures

PPE (shielding)

Training for self protection

- Optimization of protection by keeping exposure As Low As Reasonably Achievable (ALARA) concept
- Dose limits (ICRP 60)

	Occupation	al Public
Effective dose	20 mSv/yr averaged	1 mSv in a yr
	over 5 yrs.	

Treatment Systems

Innovative Surgical Procedures

Minimum Invasive Surgery Laparoscopic & Stereotactic guided surgery Interventional radiology Arthroscopy

A closer access to the different anatomic parts Accurate biopsies Avoiding major traditional surgeries reducing patient stay less risks of infection and post-op complications.

laparoscopic cholecystectomy

Oesophageal Mayotomy

Source: http://www.laparoscopy.com

Sentinel Event Alert # 50 Medical device alarm safety in hospitals

 98 reported events 80 resulted in death and 13 in permanent loss of function

Example: Patient with head injury died because of failing to respond to oxygen loss alarm – brain damage

- Major contributing factors
- Absent or inadequate alarm system (30)
- Improper alarm settings (21)
- Alarm signals not audible in all areas (25)
- Alarm signals inappropriately turned off (36)

• Other factors

- Alarm fatigue –most common
- Alarm settings not customized to individual patient or patient population
- Inadequate staff training
- Inadequate staffing to support or respond to alarm signals
- Alarm conditions and settings that are not integrated with other medical devices
- Equipment malfunctions and failures

http://www.jointcommission.org/assets/1/18/SEA_50_alarms_4_5_13_FINAL1

Conclusions

Our mission as biomedical engineers is support enhancing quality of patient care...

www.shutterstock.com · 292351964

Resources

- 1. American Collage of Clinical Engineering (ACCE) <u>www.accenet.org</u>
- 2. World Health Organization <u>www.who.int</u>
- 3. Association for the Advancement of Medical Instrumentation (AAMI) <u>www.AAMI.org</u>
- 4. Emergency Research Institute documentations and website <u>www.ecri.org</u>
- 5. Health Information and Management System Society (HIMSS) <u>www.himss.org</u>
- 6. IEEE Engineering in Medicine and Biology <u>www.ieee.org/embs/index.html</u>
- 7. Iyad Mobarek, Computerized maintenance management system, WHO Medical device technical series, WHO 2011 <u>www.who.int</u>
- Iyad Mobarek, et al, Fully Automated Clinical Engineering Technical Management System, Journal of Clinical Engineering: January/March 2006 - Volume 31 - Issue 1 - pp 46-60
- 9. Iyad Mobarek, et al, Fully Automated Downtime Protocol, Journal of Clinical Engineering: October/December 2010 - Volume 35 - Issue 4 - pp 195-214